Measurement, Scaling and Instrumentation (5 cpu) 3513058 Petri P. Kärenlampi

Lectures 24 h, exercises 60 h, literature and examinations 49 h

Measurement of volume, mass, and moisture content. Instrumentation and signal processing. Spectroscopy, acoustics, thermography.

Calorimetry, polarized light.

Phase retardation, diffraction.

 

Student will gain some knowledge regarding techniques and systems for measurement and instrumentation, and consequently the ability to understand and sketch principles for measurement applications.

 

Lectures will be given at Bor101, and streamed with Video Conference Apparatus into Microsoft Teams. Presently, there are no restrictions to the presence in the lecture room. Any participant shall have an opportunity to present questions and comments either in the lecture room or within the Teams-meeting.

Exam will hopefully be on site. Please check the exam dates proposed below. Let the lecturer know if there is any time conflict.

 

 

Lectures on Mondays can be joined at

https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZTlmMzk4ODEtYjZkNy00ODZkLWFkYzctOGJiNWMxOGY1OGNj%40thread.v2/0?context=%7b%22Tid%22%3a%2287879f2e-7304-4bf2-baf2-63e7f83f3c34%22%2c%22Oid%22%3a%228457a000-0a53-4a4c-bf47-2814d5d7539c%22%7d

 

 

Lectures on Wednesdays can be joined at

https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZjFkNjY1NzktZjU4ZC00MDEzLTgzMDktNmZmNGRhOTIwMTk1%40thread.v2/0?context=%7b%22Tid%22%3a%2287879f2e-7304-4bf2-baf2-63e7f83f3c34%22%2c%22Oid%22%3a%228457a000-0a53-4a4c-bf47-2814d5d7539c%22%7d

 

Lecture on Tuesday, April 25 can be joined at

https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZWI3NWQ1MTItYjhjMS00MWI3LWE4N2YtMWY0MmI4Y2Y5YWM2%40thread.v2/0?context=%7b%22Tid%22%3a%2287879f2e-7304-4bf2-baf2-63e7f83f3c34%22%2c%22Oid%22%3a%228457a000-0a53-4a4c-bf47-2814d5d7539c%22%7d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lectures:

BOR101

 

20.3.2023, 8-10 Volume, Mass

22.3., 8-12 Moisture, Humidity, Sorption

 

27.3., 8-10 Signal processing, Filtering, Integration

29.3., 8-12 Fourier-transform, Spectroscopy, Acoustics

 

3.4., 8-10 Calorimetry

5.4., 8-12 Thermography, Thermoelasticity

 

19.4., 8-12 Polarized light, Phase retardation

 

25.4., 8.00-12 Reporting of final exercise

 

 

 

Grading:

Weekly exercises 25%

Exam 75%

 

There are two types of exercises.

 

Weekly exercises are due March 27, April 3, 17 and 24, at 9 am, to be returned to the Lecturer’s green metallic mailbox by the Northern entrance of the Borealis Building. Emails sent after the due time will not be processed.

 

 

Weekly Exercises:

 

Exercise 1 

 

Exercise 2

 

Exercise 3

 

Exercise 4

 

 

 

Final Exercises.

Exercise consists of review of assigned literature, to be selected from the list below. This review will be presented as an oral presentation of 20 minutes. No written report is required, provided the oral presentation is satisfactory. However, the talk may have to be complemented in writing.
Please let the lecturer know whether you are available to give your presentation in the lecture room by April 26.

 

 

Literature:

Willard, H. H., Merritt, L. L., Dean, J. A. and Settle, F. A., Instrumental methods of analysis. Wadsworth, Belmont, CA, 7th ed. 1988. 895 p. – pp. 1-39, 97-117, 761-785.

Young, H. D. and Freedman, R. A., University Physics. Addison-Wesley, 10th Ed. 2000., pp.  593-619, 1053-1084.

 

Handwritten lecture notes

 

Final examination April 28, at 10-12, Room Bor100.

Possibility for eventual renewals May 12, at 10-12, Room Bor100.

 

Results

 

 

Lecture recordings:

 

 

https://media.uef.fi/View.aspx?id=93115~5g~7WNgMROFdy&code=CC~fCTfjrgGSVlCKOnmMMgVpItFFbUJKbGlePkxLrA3DcEGGEt5xTWziy9JfBAF&ax=7J~T6cmoQ9JmQPvDc

 

https://media.uef.fi/View.aspx?id=93195~5o~huexr9zfK6&code=Cs~USWJjY9xryzvlgmsAbxyXnDVLQJXKctjVd9WwTGHlDgzXhU2z2zCDTQvscxO&ax=7I~rjNVESPxQ2Wefm

 

https://media.uef.fi/View.aspx?id=93283~5m~f7AwXccwPe&code=Ct~vtl9VakTPzsMJ6N9GKRbJnsgvekrue9kqnGXyoa9sItBf0lnEhgDwuw9GTnu&ax=7G~oUiIjJsOVairkS

 

https://media.uef.fi/View.aspx?id=93278~5q~jSJKMlVUEY&code=C9~7CsaWf6ANYUyLaLmhwxeXuMMIzQ5ugArVUlGWKnRKUyzM0m0GinPm0bheYhH&ax=7B~JyL4KBpfHoPY86

 

https://media.uef.fi/View.aspx?id=93391~5m~f7AwXdcxPc&code=D4~leP7cFVhbQRhQ0QndHeBjXxShPXeEOz0xr6PwZ6ZhgkIjsQ5fcoWtYMtE0n9&ax=7G~oUiIjKsPV8irkS

 

https://media.uef.fi/View.aspx?id=93440~5h~zJbFwT8SBu&code=Cr~t6H8zZPnUJGdOCMXtAdVkbPAbhih8XNhyQugvwmeeCUCO9BntLSCLnjqdvIf&ax=7K~tGrX8Tl9KMIN9P

 

https://media.uef.fi/View.aspx?id=93500~5e~WLi3rKrWiC&code=CA~deo0PtLb6Tz2QlnbzDuTRJQZleSzoTt6nk7MIqLZp2ewoGJ0nxHsxwObDoVs&ax=7y~fnRsFjIpoyiUGY

 

https://media.uef.fi/View.aspx?id=93501~5f~xmxEbJDiGE&code=Cs~USWJjY9xryzvlgmsAbxyXnDVLQJXKctjVe9UwTGQlCgAXbTWyYzIDRQoshxS&ax=7z~HafRpiTLMBccdC

 

https://uef.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=9607b7e9-c617-46ef-8348-afea00795a37

 

https://uef.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a38cea1b-a7ea-4305-904a-afea00795a7f

 

https://uef.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=6a436ac2-d245-419b-9b6c-afef00bdafb9

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement of wood chemical structure, and prediction of its macroscopic properties, in terms of infrared spectroscopy.

4327. Brust, G., Infrared spectroscopy. http://www.psrc.usm.edu/macrog/floor5.htm

4327b. Brust, G., Infrared vibrational modes.

http://www.psrc.usm.edu/macrog/irabs.htm

4573. Schimleck, L. R., Wright, P. J., Michell. A. J. and Wallis, A. F., Near-infrared spectra and chemical compositions of Eucalyptus globulus and E. nitens plantation woods. Appita 50:40-46 (1997).

4394. Kindl, W., Schwanninger, M., Teischinger, A. and Hinterstoisser, B., Relating chemical composition of wood to its mechanical properties: results from UV-microscopic and near infrared microscopic studies. Fist International Conference of the European Society of Wood Mechanics,  April 19-21, 2001, Lausanne, Swizerland, pp. 15-19.

4395. Niemz, P., Körner, S., Wienhaus, O., Flamme, W. and Balmer, M., Orientierende Untersuchungen sur Anwendung der NIR-Spektroskopie für die Beurteilung des Mischungsverhältnisses Laubholz/Nadelholz und des Klebstoffanteils in Spangemischen. (Applying NIR spectroscopy for evaluation of the hardwood softwood ratio and resin content in chip mictures.) Holz als Roh- und Werkstoff 50:25-28 (1992).

4270. Hauksson, J. B., Bergqvist, G., Bergsten, U., Sjöström, M. and Edlund, U., Prediction of basic wood properties for Norway Spruce.  Interpretation of near infrared spectroscopy data using partial least squares regression. Wood Sci. Tech. 35(6):475-485 (2001).

 

Wood pulp chemical structure, in terms of infrared spectroscopy.

4327. Brust, G., Infrared spectroscopy. http://www.psrc.usm.edu/macrog/floor5.htm

4327b. Brust, G., Infrared vibrational modes.

http://www.psrc.usm.edu/macrog/irabs.htm

4579. Åkerholm, M. and Salmén, L., Dynamic FTIR spectroscopy for carbohydrate analysis of wood pulps. J. Pulp Paper Sci. 28(7):245-249 (2002).

4580. Backa, S. and Brolin, A., Determination of pulp characteristics by diffuse reflectance FTIR. Tappi 74(5):218-226 (1991).

4581. Easty, D. B., Berben, S. A., DeThomas, F. A. and Brimmer, P. J., Near-infrared spectroscopy for the analyisis of wood pulp: quantifying hardwood-softwood mixtures and estimating lignin content. Tappi 73(10):257-261 (1990).

4582. Hsu, N. N.-C., Schroeck, J. J. and Errigo, L., Identification of the origins of stickies in deinked pulp. Tappi 80(4):63-68 (1997).

 

Mechanical properties of paper products, and control of pulping and papermaking processes, in terms of infrared spectroscopy.

3829. Furumoto, H., Lampe, U., Meixner, H. and Roth, C., Infrared analysis for process control in the pulp and paper industry. Tappi 83(9) (2000). 9 p.

4586. Schultz, T. P. and Burns, D. A., Rapid secondary analysis of lignocellulose: comparison of near infrared (NIR) and fourier transform infrared (FTIR). Tappi 73(5):209-212 (1990).

4583. Morrison, P. W. Jr., Cosgrove, J. E., Carangelo, R. M., Solomon, P. R., Leroueil, P. and Thorn, P. A., Fourier transform infrared (FTIR) instrumentation for monitoring recovery boilers. Tappi 74(12):68-78 (1991).

 

Properties of pulps and cooking liquors properties in terms of ultraviolet spectroscopy.

4404. Ye C., Räty J., Nyblom I., Hyvärinen H-K. and Moss P., Estimation of lignin content in single, intact pulp fibers by UV photometry and VIS Mueller matrix polarimetry. Nordic Pulp & Paper Vol. 16, No. 2, p. 143-148 (2001).

4576. Evtuguin, D. V., Daniel, A. I. D. and Pascoal Neto, C., Determination of hexeuronic acid and residual lignin in pulps by UV spectroscopy in cadoxen solutions. J. Pulp Paper Sci. 28(6):189-192 (2002).

4577. Chai, X. S. , Li, J. and Zhu, J. Y., Simultaneous and rapid analysis of hydroxide, sulphide and carbonate in kraft liquors by attenuated total reflection UV spectroscopy. J. Pulp Paper Sci. 28(4):105-109 (2002).

 

Determination of wood structure, in terms of ultraviolet spectroscopy.

1667. Scott, J. A. N, Procter, A. R., Fergus, B. J. & Goring, D. A. I. The application of ultraviolet microscopy to the distribution of lignin in wood. Description and validity of the technique. Wood Sci. Tech. 3:73-92  (1969).

48. Fergus, B. J., Procter, A. R., Scott, J. A. N. & Goring, D. A. I. 1969. The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci. Tech. 3(2):117-138.

1669. Fergus, B. J. and Goring, D. A. I., The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung 24(4):118-124 (1970).

 

Microwaves in the determination of wood properties.

4288. Martin, P., Collet, R., Barthelemy, P. and Roussy, G., Evaluation of wood characteristics: internal scanning of the material by microwaves. Wood Sci. Tech. 21:361-371 (1987).

4598. Eskelinen, P. and Eskelinen, H., A K-band microwave measuring system for the analysis of tree stems. Silva Fenn. 34(1):37-45 (2000).

4599. Montoro, T., Manrique, E. amd González-Riviriego, A., Measurement of the refracting index of wood microwave radiation. Holz als Roh- und Werkstoff 57:295-299 (1999).

 

Raman-spectroscopy in the determination of properties of pulps and polymers.

4255. Galiotis, C., A study of mechanisms of stress transfer in continuous- and discontinuous-fiber model composites by laser raman spectroscopy. Comp. Sci. Techn. 48:15-28 (1993).

3458. Hamad, W. Y. and Eichhorn, S., Deformation micromechanics of regenerated cellulose fibers using raman spectroscopy. J. Eng. Mat. Tech. 119:309-313 (1997).

2357. Hamad, W. and Eichhorn, S., Raman spectroscopic analysis of the microdeformation in cellulosic fibers. 11th Fundamental Research Symposium, Cambridge, England, Sept. 21-26, 1997, pp. 505-519.

4255. Galiotis, C., A study of mechanisms of stress transfer in continuous- and discontinuous-fiber model composites by laser raman spectroscopy. Comp. Sci. Techn. 48:15-28 (1993).

 

Acoustics in the determination of the properties of sawlogs.

3941. Tsehaye, A., Bunchanan, A. H. and Walker, J. C. F., Sorting of logs using acoustics. Wood Sci. Tech. 34(4):337-344 (2000).

4289. Han, W. and Birkeland, R., Ultrasonic scanning of logs. Industrial Metrology 2:253-281 (1992).

4839. Huang, C.-L., Lindström, H., Nakada, R., and Ralston, J., Cell wall structure and wood properties determined by acoustics – a selective review. Holz als Roh- und Werkstoff 61:321-335 (2003).

 

Applications of mechanical wave detection in wood and paper industries.

4313. Kang, H. and Booker, R. E., Variation of stress wave velocity with MC and temperature. Wood Sci. Tech. 36(1):41-54 (2002).

2254. Craver, J. K. and Taylor, D. L., Nondestructive sonic measurement of paper elasticity. Tappi 48(3):142-147 (1965).

4596. Sasaki, Y., and Hasegawa, M., Ultrasonic measurement of applied stresses in wood by acoustoelastic birefringent method. 12th International Symposium on Nonderstructive Testing of Wood, Sopron, Hungary, September 2000, http://www.ndt.net/article/v06n03/sasaki/sasaki.htm

1186. Batten, G. L., The differences between sonically and mechanically determined elastic moduli of paper. In: Caulfield, D. F., Passaretti, J. D. and Sobczynski, S. F. (eds.), "Materials Interactions Relevant to the Pulp and Paper and Wood Industries", Vol. 197, pp. 163-172. Materials Research Society, Pittsburg, 1990.

 

Monitoring fractures through acoustic emissons.

1196. Yamauchi, T. and Murakami, K., Acoustic and optical measurements during the straining of paper.  1991 International Paper Physics Conference, September 22-26, Kona, Hawaiji , pp. 681-684.

3815. Berg, J.-E. and Gradin, P. Effect of temperature on fracture of spruce in compression, investigated by use of acoustic emission monitoring. J. Pulp Paper Sci. 26(8):294-299 (2000).

4108. Aicher, S., Höfflin, L. amd Dill-Langer, G., Damage evolution and acoustic emission of wood at tension perpendicular to fiber. Holz als Roh- und Werkstoff 59:104-116 (2001).

4099b. Landis, N. E. and Whittaker, D. B., Acoustic emission as a measure of wood fracture energy. Fist International Conference of the European Society of Wood Mechanics,  April 19-21, 2001, Lausanne, Swizerland, pp. 295-303.

 

Changes in cell wall structure during drying.

4034. Thuvander, F., Wallström, L., Berglund, L. A. and Lindberg, K. A. H., Effects of an impregnation procedure for prevention of wood cell wall damage due to drying. Wood Sci. Tech. 34(6):473-480 (2001).

4401. Wallström, L., and Lindberg, K. A. H., Distribution of added chemicals in the cell of high temperature dried and green wood of swedish pine, Pinus sylvestris. Wood Sci. Tech. 34(4):327-336 (2000).

826. Van den Akker, J. A.: Some theoretical considerations on the mechanical properties of fibrous structures. In: Bolam, F.(ed.), Formation and struc­ture of paper Vol I. Transactions of the sympo­sium held at Oxford, September 1961. Technical Section of the British Paper and Board Makers' Associa­tion, London 1962, pp. 205-241.

 

Freezing of water in wood and pulp.

4361. Nakamura, K., Hatakeyama, T., and Hatakeyama, H., Studies on bound water of cellulose by differential scanning calorimetry. Text. Res. J. 51(9):607-613 (1981).

3531. Maloney, T. and Paulapuro, H., The formation of pores in the cell wall. J. Pulp Paper Sci. 25(12):430-436 (1999).

 

Thermography applications.

1940. Tanaka, A., Otsuka, Y. and Yamauchi, T., In-plane fracture toughness testing of paper using thermography. Tappi 80(5):222-226 (1997).

2165. Kiiskinen, H. T., Kukkonen, H. K., Pakarinen, P. I. And Laine, A. J., Infrared thermography examination of paper structure. Tappi 80(4):159-162 (1997).

4087. Hojjatie, B., Abedi, J. and Coffin, D. W., Quantitative determination of in-plane moisture distribution in paper by infrared thermography. Tappi 84(5) (2001). 11 p.

4589. Maggard, J., On-line measurement of dryer performance. Tappi 78(3):264-265 (1995).

4590. Tanaka, T. and Divós, F., Wood inspection by thermography. 12th International Symposium on Nonderstructive Testing of Wood, Sopron, Hungary, September 2000, http://www.ndt.net/article/v06n03/tanaka/tanaka.htm.

4597. Wyckhuyse, A. and Maldague, X., A study of wood inspection by infrared thermography, Parti I: wood pole inspection by infrared thermography. Res. Nonderstr. Eval. 2001:1-12.

1670. Scott, J. A. N. and Goring, D. A. I., Photolysis of wood microsections in the ultraviolet microscope. Wood Sci. Tech 4:237-239 (1970).

 

Cell wall structure through birefringence.

1467. Manwiller, F. G., Senarmont compensation for determining fibril angles of cell wall layers. For. Prod. J. 16(10):26-30 (1966).

1090. Page, D. H. and El-Hosseiny, F. The birefringerence of wood pulp fibers and the thickness of the S1 and S2 layers. Wood and Fiber 6(3):186-192 (1974).

1086. Crosby, C. M., De Zeeuw, C. and Marton, R.,  Fibrillar angle variation in red pine determined by Senarmont compensation. Wood Sci. Tech. 6:185-195 (1972).

1470. Preston, R. D., The fine structure of the walls of the conifer tracheid.  II. Optical properties of dissected walls in Pinus insignis. Proc. R. Soc. B 134(875):202-218 (1947).

4605b. Preston, R. D., Structure determination – optical microscopy. In:”Preston, R. D., The physical biology of plant cell walls”, Wiley 1974.

 

Microfibril angle through polarized light.

1081. Page, D. H., A method for determining fibrillar angle of wood tracheids. J. Micros. 90(2):137-143 (1969).

1089. Leney, L., A technique for measuring fibril angle using polarized light. Wood Fiber 13(1):13-16 (1981).

4603. El-Hosseiny, F. and Page, D. H., The measurement of fibril angle of wood fibres using polarized light. Wood and Fiber 5(3):208-214 (1973).

 

Microfibril angle through x-ray interference.

1464. Cave, I. D., Theory of X-ray measurement of microfibril angle in wood. For. Prod. J. 16(10):37-42 (1966).

1468. Meylan, B. A., Measurement of microfibril angle by X-ray diffraction. For. Prod. J. 17(5):51-58 (1967).

1105. Prud'homme, R. E. and Noah, J., Determination of fibril angle distribution in wood fibers: a comparison between thex-ray diffraction and the polarized microscope methods. Wood Fiber 6(4):282-289 (1975).

4858. Andersson, S., Serimaa, R., Torkkeli, M., Paakkari, T., Saranpää, P. and Pesonen, E., Microfibril angle of Norway spruce [Picea abiues (L.) Karst.] compression wood: comparison of measuring techniques. J. Wood Sci. 46:343-349 (2000).

 

X-ray densitometry.

4600. Gureyev, T. E. and Evans, R., A method for measuring vessel-free density distribution in hardwoods. Wood Sci. Tech. 33:31-42 (1999).

4601. Stanzl-Tschegg, S. E., Filion, L., Tschegg, E. K. and Reiterer, A., Strength properties and density of SO2 polluted spruce wood. Holz als Roh- und Verkstoff 57:121-128 (1999).

4602. Divos, F., Szegedi, S. and Raics, P., Local densitometry of wood by gamma back-scattering. Holz als Roh- und Verkstoff. 54:279-281 (1996).

4240. Bergsten, U., Lindeberg, J., Rindby, A. and Evans, R., Bach measurements of wood density of intact or prepared drill cores using x-ray microdensitometry. Wood Sci. Tech. 35(5):435-452 (2001).

 

Internal structure of sawlogs through x-ray radiation.

3628. Grundberg, S., X-ray log scanner - a tool for control of the sawmill process. Luleå Univ. of Technology, Div. of Wood Technology, Skellefteå, SE, Report 1999:37.

3629. Oja, J., X-ray measurement of properties of saw logs. Luleå Univ. of Technology, Div. of Wood Technology, Skellefteå, SE, Report 1999:14. 

4857. Skog, J. and Oja, J., Improved log sorting combining X-ray and 3D scanning – a preliminary study. Cost E 53 Conference – Quality Control for Wood and Wood Products, October 2007, Warsaw, Poland, 133-140.

 

Wood density through transmission intensity of visible.

3992. Palviainen, J. and Silvennoinen, R., Inspection of wood density by spectrophotometry and diffractive optical element based sensor. Meas. Sci. Tech. 12:1-8 (2001).

4413. Palviainen, J., Sorjonen, M., Silvennoinen, R. and Peiponen, K.-E., Optical sensing of colour print on paper by a diffractive optical element. Meas. Sci. Tech. 13:N31-37 (2002).

 

Anisotropy through light scattering patters.

4414. Simonaho, S.-P., Palviainen, J., Tolonen, Y. and Silvennoinen, R., Determination of wood grain direction from laser light scattering pattern. Optics and Lasers in Engineering  41(1):95-103 (2004).

3992. Palviainen, J. and Silvennoinen, R., Inspection of wood density by spectrophotometry and diffractive optical element based sensor. Meas. Sci. Tech. 12:1-8 (2001).

4413. Palviainen, J., Sorjonen, M., Silvennoinen, R. and Peiponen, K.-E., Optical sensing of colour print on paper by a diffractive optical element. Meas. Sci. Tech. 13:N31-37 (2002).

 

Nuclear magnetic resonance in identification and characterization of water.

4592. Guzenda, R. and Wieslaw, O., Identification of free and bound water content in wood by means of NMR relaxometry. 12th International Symposium on Nonderstructive Testing of Wood, Sopron, Hungary, September 2000, http://www.ndt.net/article/v06n03/guzenda/guzenda.htm

4287. Chang, S. J., Olson, J. R. and Wang, P. C., NMR imaging of internal features in wood. For. Prod. J. 39(6):43-49 (1989).

1960. Capitani, D., Segre, A. L., Attanasio, D., Blicharsca, B., Focher, B. and Capretti, G., 1H NMR relaxation study of paper as a system of cellulose and water. Tappi 79(6):113-122 (1996).

 

 

Heartwood detection for Scotch pine by fluorescence image analysis

5166. Antikainen Jukka, Hirvonen Tapani, Kinnunen Jussi, Hauta-Kasari Markku. Heartwood detection for Scotch pine by fluorescence image analysis. Holzforschung, Vol. 66, pp. 877–881, 2012.