THE MEASUREMENT OF FIBRIL ANGLE OF WOOD

 FIBERS USING POLARIZED LIGHTF. El-Hosseiny and D. H. Page Pulp and Paper Research Institute of Canada, Pointe Claire, Quelec
(Received 10 August, 1973)

ABSTRACT

The fibril angle of the $S=$ layer of wood pulp fibres can be detemined microsconically from the extinction position of intact cell walls between crossed polars. lt is always assumed in this method that the S_{1} and S_{3} layers are so thin that they do not affect the assumed in this method light.
The complete theory of the extinction position has been derived, taking into account the contribution of the S_{1} and $S_{i n}$ layers, for the light path used in the mercury reflectance method of Page. For certain thicknesses of the S_{2} layer, the presence of the S_{1} and S_{3} ayers can introduce serious errors in the fibril angle measurement. However, there range of $S_{1}, S_{\text {s }}$, and S_{s} thickuesses for which the error is anall and the fibres of most caution.
Additional keywords: cell-wall models, wall layers, softwoods, birefringence, mercury

introduction

The structure of a wood fibre is shown in Fig. 1 (Kerr and Bailey 1934). Apart from a tenuous primary wall P, it consists of three secondary layers S_{1}, S_{-2}, and S_{3} of varying thickness. Each layer is composed of long substantially crystalline cellulosic fibrils embedded in an amorphous matrix of hemicellulose and lignin. The fibrils of the S_{1} and $S_{\text {: }}$ layers are approximately perpendicular to the fibre axis, whereas those of the S. layer wrap around the fibre wis in a steep helix. The augle of the axis termed the fibril angle, var the henx, termed the fibril angle, varies beween fibres, but is approximately constant hin a fibre.
The S. layer is by far the thickest of the layers so that its fibril angle is important in the study of the physical behaviour of fibres and woud. For example, the stress-strain relations of a fibre depend on its fibril angle (Page et al. 1972); the shrinkage be haviour of a piece of wood depends on the mean fibril angle of its fibres (Harris and Meylin 1965). Several methods have been developed for the measurement of fibril angle, including X-ray diffraction, electron microseopy, and various techniques of light microscopy. These methods are listed in Page (1969).
wood and fiber

Some of the light microscopical techniques make use of the natural birefringence of cellulose. The fibril direction in a portion of the cell wall can be readily obtained by examination between crossed polars. Upon otation of the specimen, the transmitted intensity falls to zero when the fibrils are parallel to one of the polars. This procedure cannot be used for intact fibres because the opposite sides of a helically wound cell wall interfere. This objection has been overcome in a number of ways, for example by observation of extinction of a single wall through a bordered pit, and by observation of a single wall obtained by longitudinal sectioning. A more general, rapid, nondestructive technique was developed by Page (1969). In this method observation of a single wall is made by reflecting light from drops of mercury introduced into the lumen. The light path is shown diagrammatically in Fig. 2.
The polarized light methods all assume that extinction occurs when the fibrils in the S_{y} layer are parallel to the polarizer (or analyzer). This is only strictly true, how ever, if the thicknesses of both the S_{1} and S_{3} layers are zero. It has been assumed in previous work that the S_{1} and S_{3} hayers are sufficiently thin to have a negligible effect

Fic. 2. Light path for method of Pagc (1969). Light is reflected from the mercury drop in the lumen. Extinction occurs with crossed polars to the polarizer or analyzer, provided that the existence of the S_{1} and S_{s} layers is ignored.

theory

The detailed path of light through the cell wall is shown in Fig. 3. The incident ray passes through the S_{1}, S_{2}, and S_{3} layers, is reflected at the mercury surface, and is returned through the S_{3}, S_{2}, and S_{1} layers. The theory of the intensity of light emerging from such a system will now be presented.

The geometrical relationships between the analyzer and polarizer directions, the fibre axis, and the direction of the fibrils in each layer are represented in Fig. 4. The fibrils of S_{2} make an angle θ with the fibre axis. The S_{1} layer is generally considered

lic. 3. Actual light path for method of Page. $S . S_{=}, S$
to comprise several layers of fibril angle $70-80^{\circ}$ with alternating S and Z helices. The optical behaviour of such a structure is approximately equivalent to a single layer of fibril angle 90°. For the analysis given here, the fibrils of S_{1} are thus assumed to be perpendicular to the fibre axis. The S_{3} hayer is treated similarly. We wish to consider the variation of intensity of reflected light as the fibre is rotated. For convenience we chose as a parameter of rotation

Fis. 4. Relation of fibril direction in the S, S and $S_{\text {. }}$. layers to the directions of the polarizer and imalyzer.
the angle ϕ, the angle between the S_{2} fibril direction and the polarizer P.
Hsui et al. (1947) clerived the intensity of light emerging from n birefringent plates between a polarizor and analyzer. Applying this to our problem, we obtain the following equation:
$I=I_{0}\left[\sin 2 \phi \sin 2 \gamma_{2} \cos \gamma_{1} \cos \left(\gamma_{1}+2 \gamma_{3}\right)\right.$
$-\sin 2(\phi+\theta)\left\{\sin 2 \gamma_{1} \cos 2 \gamma_{2} \cos 2 \gamma_{3}\right.$

$$
\left.+\cos 2 \gamma_{1} \cos ^{2} \gamma_{2} \sin 2 \gamma_{3}\right\}
$$

$-\sin 2(\varphi+2 \theta) \sin \left(\gamma_{1}+2 \gamma_{3}\right) \sin \gamma_{1} \sin 2 \gamma_{2}$
$-\sin ^{2} \gamma_{1} \sin ^{2} \gamma_{2} \sin 2 \gamma_{3} \sin 2(\phi+30)$
$\left.+\cos ^{2} \gamma_{1} \sin ^{2} \gamma_{2} \sin 2 \gamma_{3} \sin 2(\phi-0)\right]^{2}$ (1)
where $\gamma_{1}=(\pi / \lambda) \mu t_{1} ; \quad \gamma_{2}=(\pi / \lambda) \mu t_{2} ; \quad \gamma_{3}=$ (π / λ) $\mu \mathrm{t}_{3}$
μ is the birefringence of the cell wall (assumed to be the same for all layers);
λ is the wavelength of the incident monochromatic light;
t_{1}, t_{3}, and t_{3} are the thicknesses of the S_{1}, S_{2}, and S_{3} layers, respectively;
I is the transmitted light intensity and I_{0} is the intensity of light incident on the specimen.
The position of the fibre at minimum transmitted intensity is obtained by equating $\mathrm{dI} / \mathrm{d} \phi$ to zero. Then $\phi=\epsilon$ where

$$
\tan 2 \varepsilon=\frac{A}{B}
$$

and
$A=\sin 6 \theta \sin ^{2} \gamma_{1} \sin ^{2} \gamma_{\gamma_{2}} \sin 2 \gamma_{3}$
$+\sin 4 \theta \sin \left(\gamma_{1}+2 \gamma_{3}\right) \sin \gamma_{1} \sin 2 \gamma_{2}$
$+\sin 2 \theta\left(\sin 2 \gamma_{1} \cos 2 \gamma_{2} \cos 2 \gamma_{3}\right.$

$$
+\cos 2 \gamma_{1} \cos ^{2} \gamma_{2} \sin 2 \gamma_{3}
$$

$$
\begin{equation*}
\left.+\cos ^{2} \gamma_{1} \sin ^{2} \gamma_{2} \sin 2 \gamma_{3}\right) \tag{2a}
\end{equation*}
$$

$B=\sin 2 \gamma_{2} \cos \gamma_{1} \cos \left(\gamma_{1}+2 \gamma_{3}\right)$

- $\cos 6 \theta \sin ^{2} \gamma_{1} \sin ^{2} \gamma_{2} \sin { }^{2} \gamma_{3}$
$-\cos 4 \theta \sin \left(\gamma_{1}+2 \gamma_{3}\right) \sin \gamma_{1} \sin 2 \gamma_{2}$
$-\cos 2 \theta\left(\sin 2 \gamma_{1} \cos 2 \gamma_{2} \cos 2 \gamma_{3}\right.$

$$
+\cos 2 \gamma_{1} \cos ^{2} \gamma_{2} \sin 2 \gamma_{3}
$$

$$
\begin{aligned}
& +\cos 2 \gamma_{1} \cos \gamma_{2} \sin <\gamma_{3} \\
& \left.-\cos ^{2} \gamma_{1} \sin ^{2} \gamma_{2} \sin 2 \gamma_{3}\right)
\end{aligned}
$$

Hecause Eq. (1) is a complete square of the function ϕ, then the minimum intensity given by Eq. (2) must be zero for all value. of γ, θ, and S_{1}, S_{2} and S_{3} thicknesses. Thus the composite sandwich behaves as a single crystal. However, the extinction direction of the sandwich differs from the direction of the S. fibrils by the angle ϵ, which can thus be regarded as the error involved in thus be regarded as the error involved in using the extinction direction of the com posite as a measure of the fibril angle of the
S. layer. We shall use the term "apparent fibril angle" to denote the angle between the extinction durection and the fibre axisthe "fibril angle" as measured by the method described by Page.

Application of the theory to specific cases The magnitude of error in fibril angle is given by Eq. (2). Unfortunately, this equation is a complex function of fibril angle, wavelength, and wall thicknesses, so that it is not possible to present an overall picture of the variation in error. The error has therefore been computed for certain specific cases.

Effect of cell-wall thickness

The thickness of the S. laver is treated as the principal variable, and its effect on crror is computed for five different combinations of S_{1} and S_{3} thickness. In each instance we consider monochromatic light of wavelength 540 nm . The birefringence of the cell-wall material of wood has been measured and found to be about 0.045 . This rises to 0.060 upon delignification. For these calculations we have adopted the latter value.

1. Fibres with no S_{3} layer, and with an S_{1} layer of constant thickness of $0.2 \mu \mathrm{~m}$. Figure 5(a) shows the apparent fibril angle as a function of S_{2} layer thickness for an actual fibril angle of 10°. The fibril angle is measured correctly only when the thickness of the S_{2} layer is $2.25 \mu \mathrm{~m}$. For thinner S_{2} layers the angle is overestimated and for thicker layers it is underestimated. A discontinuity occurs when the S_{2} thickness is 4.50

Fic. 5a. Effect of cell-wall thickness on ap parent fibril angle-case 1.
$\mu \mathrm{m}$. At this thickness the retardation of light in passing twice through the S . layer is exactly one wavelength, and the apparent fibril angle is 90°, that of the S_{1} layer. With increasing S_{2} thickness, the same graph is repeated. The error in fibril angle is no greater than 1° for in fibril angle is no greater than 1° for
fibres of S_{2} thickness lying between 1.3 fibres of S_{2} t
and $3.4 \mu \mathrm{~m}$.
Figure 5(b) shows a similar plot for an actual fibril angle of 30°. The error in fibril angle is no greater than 3° for fibres of S_{y}, thickness lying between 1.3 and $3.4 \mu \mathrm{~m}$. However, again, very considerable errors can occur for fibres outside these limits.
2. Fibres with no S_{3} layer, and with S_{1} layers that are 10% of the thickness of the S_{3} layer.
Figure 6 shows the apparent fibril angle as a function of S_{2} thickness for an actual fibril angle of 30°. The pattern is similar to Case 1 , except that the

Fic. 5b. Effect of cell-wall thickness on ap parent filril angle-case 1.

Fic. 6. Effect of cell-wall thickness on apparent riloril angle-case 2 .
crror remains small for thin S_{2} layers. The error is no greater than 3° for thicknesses between 0 and $3.4 \mu \mathrm{~m}$.
3. Fibres with an S_{s} layer that is equal in thickness to the S_{1} layer. Both layers are 5% of the thickness of the S_{x} layer. Figure 7 shows the apparent fibril angle ats a function of S_{n} thickness for an actual fibril angle of 30°. In this case, the discontinuity at $4.5 \mu \mathrm{~m}$ disappears and the error does not exceed 3° over the wide range of thicknesses from $0-6.3$ $\mu \mathrm{m}$.
4. Fibres with an S_{s} layer that is thinner than the S, layer. S, is 10% and $S_{\text {, }}$ 5 5\% of the thickness of the S_{2} layer. Figure 6 shows the apparent fibril angle as a function of S : thickness for an actual fibril angle of 30°. The behaviour is similar to Case 2, where there is no $S_{\text {: }}$ layer. The error in fibril angle is less than 3° for S_{2} thicknesses between 1.3 and 3.5 mm .

Fic. 7 . Effect of cell-wall thickness on apparent fibril angl-case 3.

Fig. 8. Effect of cell-wall thickness on apparent fibril angle-case 4.
5. Fibres with an S_{3} layer that is thicker than the S_{1} layer. S_{3} is 10% and $S_{1} 5 \%$ of the thickness of the S_{2} layer.
Figure 9 shows the apparent fibril angle as a function of S_{y} thickness for an actual fibril angle of 30°. Under these conditions there is no S_{z} thickness for which the fibril angle is correctly measured. The error is less than 5° for thicknesses between 0 and $3.4 \mu \mathrm{~m}$.

Effect of wavelength

Here we shall consider a fibre with no S_{3} layer and with the S_{1} layer 20% of the S. layer. Four thicknesses of the S_{2} layer are considered, $2.27 \mu \mathrm{~m}, 4.55 \mu \mathrm{~m}, 6.83 \mu \mathrm{~m}$, and $9.10 \mu \mathrm{~m}$.
Figure 10 shows theoretical curves of the cffect of wavelength on apparent fibri angle, for an actual fibril angle of 30°. For the thinnest S_{2} layer, the error in fibril angle is small and is independent of wavelength over the range normally used. For thicker

Fic. 9. Effect of cell-wall thickness on apparent fibril angle-case 5

Fic. 10. Effect of wavelength on apparent fibril angle for four thicknesses of the S_{2} layer (2.27 $\mu \mathrm{m}, 4.45 \mu \mathrm{~m}, 6.83 \mu \mathrm{~m}$ and $9.10 \mu \mathrm{~m})$. The S_{1} layer is assumed to be 20% of the S_{3} layer. The experimentally using a model system.
fibres the error is generally large and is a strong function of wavelength. The ap parent fibril angle is greater for higher wavelengths. Thus for thick-walled fibres, dispersion of the extinction position would occur in white light. As the fibre is rotated, a spectrum of colours would be seen and at no point would a complete extinction occur for all wavelengths.

Experimental verification

The theoretical calculations were checked in a single experiment using a model system The S_{1} and S_{2} layers of a fibre were simulated by a cellulose acetate sheet and a quartz plate of known thickness and birefringence respectively, set with their optical axes at 60° to each other to simulate a fibre of fibril angle 30°. The plates were examined under polarized vertical illumi nation in a microscope, using a mirro beneath the plates to reflect the light. The extinction position, and hence the apparent "fibril angle," was determined over a range of wavelengths from $436-670 \mathrm{~nm}$.

The results are shown as points in Fig. 10 superimposed on the theoretically determined curves. The data points fit the theoretical lines excellently

Qualitative verification is obtained from direct observation of single fibres. Thick-
walled fibres exhibit dispersion of the extinction position as predicted in Fig. 10. There is no extinction position in white light, but a spectrum of colours is seen as the fibre is rotated. The phenomenon is common for the very thick-walled summerwood fibres of the southern pines, but fibres of the thin-walled northern softwoods generally show good extinction in white light.

discussion

The assumption that the extinction angle is equal to the S_{2} fibril angle in the mercury reflectance method of Page is not generally valid. The birefringent S_{1} and S_{3} layers although thin cannot be ignored. When they are taken into account, it is found that an extinction position always occurs in monochromatic light, but the S_{2} fibrils are not then exactly parallel to the polarizer or analyzer. The theory indicates that for certain conditions the error in determination of fibril angle can be very large.

It is important to recognize these limitations in terms of the actual conditions that apply for wood pulp fibres. The error is small if the S_{1} and S_{8} layers are thin and if the S_{2} layer thickness lies between 1.3 and $3.4 \mu \mathrm{~m}$. Fortunately, these are conditions that apply to the great majority of softwood fibres. Generally the S_{1} layer is thin. Its thickness has been reported as $0.14 \mu \mathrm{~m}$ (Emerton and Goldsmith 1956), $0.20 \mu \mathrm{~m}$ (Meier 1955) and between 0.12 and $0.35 \mu \mathrm{~m}$ (Jayme and Fengel 1962). We have concluded that a mean thickness of $0.20 \mu \mathrm{~m}$ is general for most softwood peries The S_{5} layer is generally thinner species. The S_{s} layer is generally thinner than the S_{1} layer and in some species is (Jayme and Fengel 1962) and $0.10-015$ $\mu \mathrm{m}$ (Liese 1960) have been obtained for $\mu \mathrm{m}$ (Liese 1960)
For species of spruce, red cedar, balsam fir, white pine, and Douglas-fir over 95% of the fibres have S_{2}, thicknesses between 1.0 and $3.5 \mu \mathrm{~m}$. Moreover, the mean S^{2} thickness is about $2.0-2.5 \mu \mathrm{~m}$, which is the region in which the error is less than 1°

For some very thick-walled species, these conditions do not apply. The summervood
fibres of southern pines, for example, often have S_{0} thicknesses in the range $3.5-5.5$ $\mu \mathrm{m}$, and the S_{I} and S_{a} layers are also thick, so that the method fails for these fibres.
CONCLUSIONS

The use of the extinction position of the intact cell wall for the determination of fibril angle, as developed in the method of Page, must be used with care. An error arises because of the birefringent S_{1} and S_{3} layers. The crror in the determination is mall for fibres with thin S_{1} and S_{3} layers $(<0.20 \mu \mathrm{~m})$ and S, layers in the range 1.3-3.4 $\mu \mathrm{m}$. These conditions apply to most fibres of . The suftwods but certain to mosics fibres or most softho pines here many fibres thet hat execed the upper hmit of S_{2} layer thickiness. Such fibres show dispersion of the extinction position in white light, and this serves as a warning that the technigue should not be used.

refthences

Emeamon, H. W., anv V. Goldsmith. 1956. The structure of the onter secondary wall of 10:108

Hamus, J. M., axi B. A. Meylan. 1965. The influence of microfibril augle on longitudina and tangential shrinkage in Pinus radiat
Hsï, Hsiex-Yü., M. Michantz, and Yüng-K'ang for a system of retarclation plates. I. Opt Soc Am. 37:99.
Jayme, G., and D. Feveel. 1962. Elektronenoptische Beolvachtungen über den Feinbau von
Nadelholzzellen. Pap Durmst. 16 (10a):519

Kxim, T., and I. W. Bailey. 1934. The cumbium and its derivative tissues. No. X. Structure optical properties and chemical composition
of the so-called middle lanella. J. Amold Arboretuon 15:327.
Liess, W. 1960. The structure of the tertiary wall in tracheids and wood fibres. Holz. Roh Werkst. 18:296.
Meien, H. 1955. Uber den Zellwandabbau durch Holzvermorschungspilze und die submikroskopische struktur von Fichtentracheiden und Birkenholzfasern. Holz. Roh- Werkst. 13:323 Pace, D. H. 1969. A method for determining the Nibrilar angle in wood tracheids. J. Roy
PC D H, F EL
R Be, H., F. El-hosseiny, K. Winkler and ingle wood-pulp fibre Par 1 perties of proach. Pulp Pup Mus Cow 73 (8):T100 T203.

THREE-DIMENSIONAL FINITE-ELEMENT MODELS OF

 CYLINDRICAL WOOD FIBERS
J. D. Barrett

Department of the Environment, Canadian Forestry Service Western Forest Products Laboratory, Vancouver, British Columbia

and

A. P. Schniewind

University of California, Forest Products Laboratory, Richmond, Califomia

(Received 5 July 1973)

ABSTRACT

A finite-element solution is presented for analysis of concentric, multilayered, orthotropic cylinders subjected to loadings that do not vary around the circurnference. Model fibers form solution technique. The influence of boundary-shear restraint on internal stres distribution is studied. Comparing results of the three-dimensional finite-element model to values of axial stiffness and relative twisting angles predicted using simpler, twodimensional methods indicated that the two-dimensional models can give good estimates of these parameters, at least for the thin-walled models.
Additional keywords: Mathematical analysis, layered systems, finite element, cell mechanics.

