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Structural geometry effect on the size-scaling of strength
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Abstract. The sensitivity of the empirical exponent of Bazant’s size-effect scaling law on structural geometry
is clarified through numerical experiments. For large centre- cracked tension panels, made of a linearly softening
material, the best-fitting exponent is 0.90, whereas for large edge-cracked panels it is 0.75. For edge-cracked
panels, the value of the exponent increases as a function of increasing crack-length-to-width-ratio. The results
indicate that with structures of brittleness numbers below unity, reliable predictions of strength require the size-
effect scaling law to be fitted for any particular structural geometry.
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1. Introduction

A possibility of predicting the strength of a structure on the basis of laboratory- measured
material characteristics would be desirable. Since strength,i.e. the critical nominal stress,
depends on the size and geometry of the structure, such effects should somehow be considered.

There is a variety of sources of size effect. The seminal approach by Weibull (1939),
discussing statistical size effect, is still the most widely known within the engineering com-
munity. Strain gradients, introducing a size effect, may appear due to a variety of structural
reasons (Van Vliet and Van Mier, 1999). Size effect may also be due to boundary layer ef-
fects, as well as diffusion and hydration phenomena (Bazant and Planas, 1998, p. 9). Fractal
geometry explanations have recently been proposed (Carpinteri, 1994a, b; Carpinteri et al.,
1994; Carpinteri and Chiaia, 1995). Regardless of the variety of size-effect sources, the deter-
ministic, energetic fracture mechanics size effect often dominates (Bazant and Planas, 1998;
Bazant, 2000).

Closed-form solutions are generally available for the geometry effect on the critical nomi-
nal stress in two particular cases: the fully plastic case on the one hand, and the Linear Elastic
Fracture Mechanics (LEFM) case on the other hand. No analytical solution is available for
bridging these asymptotic cases; thus some kind of empirical interpolation is necessary.

Bazant’s scaling laws (Bazant, 1984, 1986) combine a description of the energetic size
effect and the geometry effect, yielding a prediction on the strength of a structure with a
known size, geometry, and a few material parameters. However, the amended form (Bazant,
1986) includes a parameter that has to be determined either empirically or through some more
refined theory, cf. Bazant et al. (1999). The appropriate value of the parameter appears to
depend on the strain-softening geometry of the material (Bazant and Planas, 1998, p. 266).
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Our primary interest is in materials which display approximately linear initial softening,
like concrete, mortar and paper (Hillerborg et al., 1976; Swartz et al., 1988; Tryding and
Gustafsson, 1996; Tryding, 1996; Kärenlampi and Yu, 1997; Ungsuwarungsri and Knauss,
1988; Östlund and Nilsson, 1993; Planas et al., 1995). Experiments propose that in the case
of concrete, the value of the parameter often is in the vicinity of 1 (Bazant et al., 1999).
However, no analysis of the eventual geometry-sensitivity of the scaling parameter has so far
been presented for such materials. Such an analysis is the objective of this paper.

First, we will briefly review the fracture mechanics size effect and asymptotic solutions
for large and small sizes, as well as interpolation formulae. Then, the numerical procedures
used in this study are described. Finally, results on the geometry effect on the size scaling of
strength, and on the empirical scaling parameter, are reported. No fundamental basis systema-
tising the scanning of eventual geometry effects is known to us, and thus we choose to discuss
some well-known geometries: centre-cracked and edge-cracked tension panels.

2. Fracture mechanics size effect

Let us consider a linearly elastic body, of a specified geometry, characterised by a length
dimensionD, with a through crack of lengtha. Under invariant external load and boundary
displacement, an extension of crack length, da, releases elastic energy by an amount

dU = −kDb(σ
N)2

E′
da, (1)

wherek is a geometry-dependent constant,b is the thickness of the structure,σN is the nomi-
nal stress, andE′ is a generalised elastic modulus. On the other hand, at critical circumstances

(dU)c = −Gf b da, (2)

whereGf is the fracture energy of the material. Thus,

Gf = kD(σNe )
2

E′
, (3)

and sinceGf is assumed to be a material constant

σNc ∝ D−1/2, (4)

whereσNc is the critical nominal stress.
The above classical case of the fracture mechanics size effect is, as such, valid as long as

Linear Elastic Fracture Mechanics (LEFM) is valid. LEFM is valid as long as all characteristic
dimensions of the structure are large in comparison to the size of the fracture process zone, and
possibly a plastic yielding zone surrounding the crack-tip. The size of the process zone in turn
depends on material properties. Following Hillerborg et al. (1976), we define acharacteristic
material lengthas

lch = GfE
′

σ 2
c

, (5)

whereσc is the tensile strength of the material, corresponding to the stress at the initiation of
strain softening.

Now, Equation (4) is valid as long asD/lch = ∞. Under the same circumstances,
√
GfE′ =

Kc = σNc
√
aβ, whereβ is a geometry-dependent function. In caseD/lch < ∞, we assume

the deviation from LEFM in the form of a power series
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GfE
′(

σNc
√
aβ
)2 = 1+ c1

lch

D
+ c2

(
lch

D

)2

+ c3

(
lch

D

)3

+ · · · . (6)

In the caselch/D→ 0, the power series may be truncated to first order, and we get

σNc =
η∞σc√

1+ θ∞ D
lch

for
lch

D
→ 0, (7)

whereη∞ andθ∞ are dimensionless variables, depending on material properties and on the
geometry of the structure, but being independent on the size of the structure. Equation (7)
gives the asymptotic solution for the critical nominal stress in the vicinity of a LEFM solution.
Analytical solutions for the variablesη∞ andθ∞ are available in the literature, see for example
(Planas and Elices, 1991, 1992; Elices and Planas, 1992; Planas et al., 1997; Bazant and
Planas, 1998).

3. Small-size asymptotic and interpolation formulae

In the limit of small structures with only one characteristic length, we can possibly write
(Bazant and Planas, 1998; Bazant, 1984, 1986),

σNc

σc
= η0+ η1

D

lch
+ η2

(
D

lch

)2

+ η3

(
D

lch

)3

+ · · · . (8)

SinceD/lch→ 0, the power series may be truncated, and we get

σNc =
η0σc√

1+ θ0
D

lch

for
D

lch
→ 0, (9)

whereη0 andθ0 are dimensionless variables, depending on material properties and structural
geometry, but not on the size of the structure.

In many cases, the analytical solution forη0 is straightforward, since in the absence of
elastic stress concentrations,η0σc equals the limit load achievable through a fully plastic
analysis. However, unlike forθ∞, with the exception of some special cases, no analytical
solutions are available forθ0. In general, the latter variable can be determined only numeri-
cally. Further, in the absence of analytical support, there is no guarantee that the integer power
series Equation (9) describes the asymptotic deviation from the fully plastic solution for the
critical nominal stress. Actually, it has been shown numerically by Planas et al. (1997) that in
the case of an initially linearly softening cohesive law, the appropriate asymptotic formula for
three-point bending specimens is

σNc =
η0σc√√√√1+
√
µ0
D

lch

for
D

lch
→ 0, (10)

whereµ0 depends on material properties and structural geometry.
In 1984, Bazant (1984) implicitly assumed thatη∞ = η0 andθ∞ = θ0, which, through

asymptotic matching, resulted in the size-effect scaling law
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σNc =
σ
pl
c√

1+ B , (11)

whereσplc is fully plastic solution for the critical nominal stress, andB is the brittleness
number. Asymptotic matching at the LEFM limit yields

B =
(
σ
pl
c

)2
D

GfE
′ g, (12)

whereg is a dimensionless geometry function. Using the notation of Equation (6),

g = a

D
β2.

In order to achieve a better fit to experimental results, Bazant (1986) later modified the scaling
law of Equation (11) into the more flexible form

σNc =
σ
pl
c

(1+ Br)1/2r (13)

which, of course, provides the same asymptotes at the plastic and the LEFM limits. Anyway,
the assumptions,η∞ = η0 andθ∞ = θ0, are not well justified; very different mechanisms
prevail in the vicinity of the plastic limit and the LEFM limit. Thus, the asymptotic matching
is a questionable procedure in this case.

In addition to Equations (11) and (13), more complicated interpolation formulae have been
presented in the literature (Planas et al., 1997). However, such formulae have to be calibrated
for any structural geometry, as well as for any strain-softening behaviour. The relative sim-
plicity of Equation (13) makes it very attractive, at least if the scaling exponentr would not
be strongly dependent on structural geometry. In the following sections, we intend to study
the structural geometry effect onr in the case of linearly softening materials.

4. Numerical procedures

Numerical analyses were accomplished for centre-cracked and edge-cracked tension panels
under plane stress. The mathematical model is described in detail in (Östlund and Nilsson,
1993; Östlund, 1995), the crack-tip singularity being cancelled by the action of the cohesive
stresses. The notations used for the mathematical formulation are shown in Figure 1.

The equation governing the crack widening was derived by considering the closing action
of the cohesive forces acting on the surface of the crack. Normalised crack widening,ν̂ =
ν/νc, is determined from the solution of the integral equation

ν̂(x) =
√
w√
πa0

fv

(
x

w
,
a

w

)
fk

(
a0

w
,
a

w

) a∫
a0

p̂(ν̂)gk

(
ξ

w
,
a

w

)
dξ −

a∫
a0

p̂(ν̂)gν

(
ξ

w
,
x

w
,
a

w

)
dξ, (14)

where an uppercase bar denotes normalisation with respect tolch. The normalised cohesive
stress is given by the linear softening law

p̂ = p

σc
= 1− ν̂. (15)
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Figure 1. Cohesive zone modelling of bridging at a loaded crack tip.

Figure 2. Results of numerical experiments for the critical nominal stress within a large centre-cracked tension
panel as a function of brittleness number, as well as a fit of Equation (13) into the results. The analysis is carried
out with a linearly softening cohesive law and the curve fit yields the exponentr = 0.9.

The functionsfv andfk are defined by the crack wideningV (x) and stress intensity factorK,
respectively, which would result from a crack of lengtha, without any bridging forces:

V (x) = σN

E′
wfv

( x
w
,
a

w

)
, (16)

K = σN√πa0fk

(a0

w
,
a

w

)
. (17)

The functionsfv and fk are given in the Appendix. The functionsgv and gk are Green’s
functions, which are also given in the Appendix.

By increasing the external tensile load and thus the applied stress intensity factor, equilib-
rium solutions to Equation (14) for the length of the damage zone, as well as crack widening
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Figure 3. Results of numerical experiments for the critical nominal stress within a large double-edge-cracked
tension panel as a function of brittleness number, as well as a fit of Equation (13) into the results. The analysis is
carried out with a linearly softening cohesive law and the curve fit yields the exponentr = 0.75.

Figure 4. Results of numerical experiments for double-edge-notched tension panels with three different geome-
tries, in addition to the large-size results already shown in Figure 3. The analysis is carried out with a linearly
softening cohesive law.
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and the resulting cohesive stress within the damage zone, were searched. This was repeated,
for increased external load, unless instability occurred. A detailed description of the numerical
procedure used for solving the integral equation is available in a previous paper (Östlund,
1995).

5. Results

Numerical results for the normalised critical nominal stressσNc /σ
pl
c within a large centre-

cracked panel, as a function of the brittleness number, are shown in Figure 2. Figure 2 also
shows a fit into Equation (13); an exponentr = 0.9 provides an excellent fit to the numerical
results.

Numerical results for the normalised critical nominal stressσNc /σ
pl
c within a large double-

edge-cracked tension panel, as a function of the brittleness number, are shown in Figure 3.
Figure 3 also shows a fit into Equation (13); an exponentr = 0.75 provides an excellent fit
with the numerical results. We find that the normalised critical stress is lower for the double
edge-cracked panel (Figure 3) than for the centre-cracked panel (Figure 2).

It appears from the above that there possibly is a significant structural geometry effect on
the empirical scaling exponent. In order to verify this, computer experiments were conducted
for three additional geometries of double edge-cracked tension panels, for crack-length-to-
half-width ratiosa/w = 1

3, a/w = 1
9, anda/w = 1

27. The results, together with the infinite-
panel result, are shown in Figure 4. We find that there definitely is a geometry effect: the
critical stress is greater for largea/w-ratios. The necessary scaling exponent increases as
well, being in the order of 1.3-1.4 fora/w = 1

3.

6. Discussion

Even with invariant material properties, the size-scaling of strength is sensitive to structural
geometry. With structures of brittleness numbers below unity, reliable predictions of strength
require the size-effect scaling law to be fitted for any particular structural geometry. This
somewhat reduces the applicability of Bazant’s scaling law (Bazant, 1986) for the prediction
of the strength of structures.

We find from Figure 4 that the structural geometry effect on the size-scaling of strength
vanishes at large brittleness numbers. This is a natural consequence of the brittleness number
being matched to the LEFM limit. The large-brittleness asymptote of the scaling thus is correct
and exactly known. The same matching not really being valid at low brittlenesses, the scaling
loses its generality when the brittleness number decreases to the vicinity of unity.

In an ideal situation, the strength of a structure could be determined on the basis of labora-
tory-measured material properties using a simple scaling law, without entering numerical
exercises. Unfortunately, this does not appear to be possible. When the structural geometry
is variable, size-scaling always appears to require parameters which have to be determined
numerically.
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Appendix

Geometry-specific functions used in the formulation of the governing equations are given in
this appendix. The expressions for a central crack in an infinite plate under remote uniform
tension are exact and can be found in Tada (1985). The solutions for a double-edge-cracked
finite plate under remote uniform tension are approximate high accuracy solutions obtained
using a weight function technique (Wu and Carlsson, 1991). It should be noted that the analy-
sis for double-edge-cracked-infinite width plate under uniform remote tension was carried out
by considering a finite width plate of sufficient width to yield results independent of the width
of the plate.

CENTRE-CRACKED INFINITE PLATE UNDER REMOTE UNIFORM TENSION
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DOUBLE-EDGE-CRACKED FINITE WIDTH PLATE UNDER UNIFORM REMOTE TENSION

fk
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= fr
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√
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, (A5)

where

fr
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w

)
=

6∑
i=0

αi

( a
w

)i
√

1− a

w

(A6)

and α0 = 1.1215, α1 = −0.5699, α2 = −0.7056, α3 = 2.4748, α4 = −3.1194, α5 =
1.8945, α6 = −0.4594.
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Furthermore
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whereγ0 = 2.9086, γ1 = −1.2338, γ2 = −3.6484, γ3 = 6.4738, γ4 = 12.2265, γ5 =
−54.9146, γ6 = 65.9937, γ7 = −27.070.
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